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ABSTRACT
Lossy compression enhances the scalability of contemporary data

collection infrastructures by reducing the volume of data that needs

to be transmitted and stored. Sim-Piece is a state-of-the-art lossy

compressing algorithm for time series data that outperforms com-

peting techniques, attaining compression ratios with more than

twofold improvement on average over what prior lossy algorithms

can offer. In this work, we introduce Sim-Piece+, an enhanced itera-

tion of Sim-Piece that further enhances compression ratios through

the utilization of advanced data encoding techniques.
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1 INTRODUCTION
With the emergence of the Internet of Things (IoT), enormous

amounts of streaming, timestamped datasets are being generated.

Sensors from smart wearables, smart cities, autonomous cars, agri-

cultural facilities etc., produce time series data which needs to be

collected centrally in order to be later analyzed [1, 2, 3, 5, 6, 8].

Time series are also encountered in other domains, such as finance,

e-commerce, health care, social networks and more.

Specialized time series data compression algorithms, such as

Gorilla [14] and Chimp [11], are utilized to enable Time Series

Databases (TSDBs) to effectively handle extensive datasets. These

algorithms are designed for applications that require precise and

detailed data values. On the other hand, lossy compression algo-

rithms provide significantly greater space savings by allowing a

certain level of acceptable error within a predefined bound. These

algorithms are particularly suitable for applications that put empha-

sis on extracting meaningful patterns and insights from the data,

rather than preserving precise numerical accuracy. They find utility

in tasks such as seasonality detection, clustering, forecasting, and

similarity search.
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Figure 1: Groups of segments that we can represent jointly
with Sim-Piece.

Sim-Piece [9] is a lossy timeseries algorithm that is based on the

popular Piecewise Linear Approximation (PLA) scheme [7]. The

novel algorithm takes advantage of the resemblances among the line

segments generated by the PLA algorithm to create a unified repre-

sentation for multiple segments. Our experimental evaluation using

multiple real and synthetic datasets [9] demonstrates significant

improvements in space efficiency across a wide range of maximum

error values, even when the permissible error margin is minimal.

In this work we present Sim-Piece+, an extension of Sim-Piece that

offers even more substantial reductions in space requirements by

improving the encoding of its internal representation.

2 SIM-PIECE ALGORITHM
PLA algorithms represent time-series measurements using a se-

quence of line segments, while keeping the approximation error

within a predetermined acceptable threshold. Sim-Piece is a novel

approach for PLA that seeks to exploit similarities among the line

segments produced. Sim-Piece starts a line segment at a quantized

value close to the original one. Then, it adds more points by keeping

two slopes: the highest and lowest ones that fit the data within the

required approximation guarantees, until a point goes beyond them.

As any of the lines between the two slopes can approximate the

data points of the segment, we can find groups of segments with

intersecting sets of candidate lines and represent them jointly, to

reduce the overall space requirements. Figure 1 shows an example
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Variable Sim-Piece Sim-Piece+

𝑒𝑟𝑟𝑜𝑟 FLOAT FLOAT

𝑏1 INT INT

#𝑏 UINT VARIABLE-BYTE

for 𝑖 = 1; 𝑖 ≤ #𝑏; 𝑖 + +;
𝑏𝑖 BYTE (+UINT)* BYTE (+UINT)*

#𝑎𝑖 BYTE (+SHORT) VARIABLE-BYTE

for 𝑗 = 1; 𝑗 ≤ #𝑎𝑖 ; 𝑗 + +
𝑎𝑖, 𝑗 FLOAT FLOAT

#𝑡𝑖, 𝑗 BYTE (+SHORT) VARIABLE-BYTE*

for 𝑘 = 1;𝑘 ≤ #𝑡𝑖, 𝑗 ;𝑘 + +
𝑡𝑖, 𝑗,𝑘 UINT VARIABLE-BYTE

𝑡𝑙𝑎𝑠𝑡 UINT VARIABLE-BYTE

* Delta Encoding

Table 1: Data representation for encoding Sim-Piece data.

PLA approximation with two groups of mergable segments. Each

group can be represented with a single pair of (starting-value, slope)

values. This allows us to represent, in this example, all five PLA

segments with using just two lines. Their starting timestamps are

also stored, so that we can reconstruct them entirely when decom-

pressing them. Given a set of PLA segments, Sim-Piece computes

the optimal solution to this problem, coming up with the minimum

possible number of groups to represent them jointly [9].

The encoding of Sim-Piece data is presented in Table 1. Each

segment is represented by a line equation 𝑦𝑖 (𝑡) = 𝑎𝑖 (𝑡 − 𝑡𝑖 ) + 𝑏𝑖 ,

where 𝑎𝑖 denotes the slope, 𝑏𝑖 represents the starting value, and

𝑡𝑖 signifies the starting timestamp. These lines are grouped based

on their 𝑏𝑖 and 𝑎𝑖 values. To ensure successful decoding, binary

counters are introduced before each group, denoted as #𝑏 and #𝑎. For

each merged group, the list of starting timestaps of its constituent

line segments is stored. Starting values𝑏𝑖 are quantized based on the

maximum error threshold (𝑒𝑟𝑟𝑜𝑟 ) used and the resulting integers

are delta-encoded. This error, the first y-intercept (𝑏1) and the last

timestamp of the timeseries (𝑡𝑙𝑎𝑠𝑡 ) are encoded too. Sim-Piece+

is an enhanced version of the original Sim-Piece which further

improves the compression ratio by taking advance of a Variable-

Byte encoding technique [15]. Variable-Byte encoding is a simple

and effective method used for integer compression. The encoding

scheme works by representing an integer value using a variable

number of bytes. The basic idea is to use the most significant bit of

each byte to indicate whether it is the last byte in the representation

or if there are more bytes to follow. In Sim-Piece+, the utilization of

Delta encoding is incorporated alongside Variable-Byte encoding to

compress starting timestamps. By combining these two techniques,

the compression ratio is significantly improved.

3 EXPERIMENTAL EVALUATION
Figure 2 shows the average compression ratio achieved by Sim-Piece

and state-of-the-art PLA techniques, i.e., PMC-MR [10], Swing and

Slide [4] and Mixed [12], on a real dataset extracted from [13]. The

maximum error threshold used was 0.5% and 5% of each dataset

range of values. Sim-piece clearly outperforms all prior PLA tech-

niques. Sim-piece+ manages to achieve even higher compression

ratios, due to the enhanced data encoding it utilizes.
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Figure 2: Average compression ratio comparison of lossy PLA
approaches for two error thresholds.
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