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Abstract
Approximating a series of timestamped data points through a sequence of line segments with a maximum error guarantee is a
fundamental data compression problem, termed as Piecewise Linear Approximation (PLA). As the demand for analyzing large
volumes of time-series data across various domains continues to grow, the significance of this problem has recently received
considerable attention. Recent PLA algorithms have emerged to help us handle the overwhelming amount of information,
albeit at the expense of some precision loss.More precisely, these algorithms involve a delicate balance between themaximum
acceptable precision loss and the space savings that can be achieved. In our recent work we proposed Sim-Piece, offering
a fresh perspective on the long-standing challenge of PLO approximation. Sim-Piece identifies similarities among line
segments in a PLA representation enabling their grouping and joint representation. This way, Sim-Piece delivers space-
saving advantages that outperform even the optimal PLA approximation. In this work, we present Mix-Piece, an improved
PLA compression algorithm that builds upon the core idea of Sim-Piece (i.e., exploiting similar PLA segments) but
improves further its performance by (1) considering multiple candidate PLA segments when ingesting a time series, (2)
enabling grouping of additional segments not utilized by Sim-Piece, and, (3) making use of a versatile output format that
exploits all segment similarities. Our experimental evaluation demonstrates that Mix-Piece outperforms Sim-Piece and
previous competing techniques, attaining compression ratios with more than twofold improvement on average over what PLA
algorithms can offer. This allows for providing significantly higher accuracy with equivalent space requirements.

Keywords Compression · Lossy · Time series

1 Introduction

Contemporary applications generate massive amounts of
streaming data, often depicted as a series of timestamped
records. In many cases, storing the data is quite challenging
due to their volume, and applying compression techniques
as a means to reduce the respective storage requirements is
deemed necessary. Depending on the problem at hand, one
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could use either lossless or lossy compression techniques.
The former reduce the size of data without loss of informa-
tion, whereas the latter aim for larger space savings while
tolerating a bounded maximum error.

Piecewise linear approximation (PLA) is a fundamental
data compression problem dating back to the 1960s [2],
commonly used to approximate time series data. PLA algo-
rithms represent time series measurements using a sequence
of line segments, while keeping the approximation error
within a predetermined acceptable threshold. Clearly, these
algorithms are associated with a trade-off between space effi-
ciency and precision loss, i.e., the space savings grow with
the value of the error threshold.

PLA techniques have been shown to efficiently support
the storage of voluminous historical time series data while
also addressing many data analytics tasks, such as detecting
seasonality and forecasting without sacrificing effectiveness
[40]. Depending on the selected maximum error tolerance,
PLA methods can drastically reduce the size of time series
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Fig. 1 Compression ratio comparison of previous PLA approaches for
two error thresholds ε: amodest 5%and a strict one 0.5%of the dataset’s
range, against Sim-Piece and Mix-Piece algorithms

data, achieving compression ratio values that are far beyond
the capabilities of state-of-the art lossless compression algo-
rithms [24].

1.1 Shortcomings of existing PLA techniques

In many applications there is a certain amount of imprecision
in the collected data. For instance, sensor temperature mea-
surements often have a 0.1–0.5 degree accuracy. For such
applications, we may want to use a tight error threshold with
respect to the range of values in order to reduce data size
without sacrificing fidelity. Unfortunately, the merits of PLA
approaches are not that evident in such a scenario and loss-
less [26] or bounded precision [28] compression techniques
may provide larger space savings.

Figure1 shows the compression ratio, defined as the
proportion of the number of bytes in the uncompressed
representation to the number of bytes in the compressed rep-
resentation, achieved by earlier state-of-the-art algorithms
that generate PLAs of a time series for a user-defined max-
imum error threshold.1 The figure depicts results for a
representative dataset from those used in our experimental
evaluation and two error threshold values (ε), a modest one
equal to 5%, and a strict one equal to 0.5%, of the signal’s
range (defined as the difference between its maximum and
minimum value). With regards to the modest error threshold,
we see that the performance of all four earlier PLAalgorithms
is sufficient. Slide [12] computes the optimal –space-wise–
PLA representation [35] using disjoint line segments (dis-
cussed in Sect. 2) for a given maximum error threshold. Still,
Mixed [29] offers increased space savings, by considering
both joint and disjoint segments, taking up less than 1/45
of the original size. However, when the error threshold is
more stringent, the compression ratio of the earlier PLA
approaches is less notable, reaching below 5:1 at its best
(Mixed), whereas Mix-Piece achieves savings of 10:1.

1 This figure is intended for illustration purposes only.Amore thorough
evaluation, including additional datasets and algorithms, can be found
in our experimental evaluation section.

Fig. 2 MaximumAbsolute Error (MAX),MeanAbsolute Error (MAE)
and Root Mean Square Error (RMSE) comparison of previous PLA
approaches for the same compression ratio (20:1), against Sim-Piece
and Mix-Piece algorithms

1.2 More efficient PLA via flexible grouping of
segments

In this paper we discuss novel techniques that seek to exploit
similarities among PLA-produced line segments in order to
make PLA effective even on very tight error thresholds. This
work builds upon our recent algorithm, Sim-Piece[24]
that, to the best of our knowledge, was the first approach
that exploited similar PLA segments’ descriptions, in order
to jointly represent them in the compressed output. As we
see in Fig. 1, Sim-Piece and Mix-Piece greatly extend
the space-savings of lossy approximations for the same error
bounds. Moreover, our algorithms come up with lossy com-
pressed representations that provide notable space savings,
even in cases where the acceptable error threshold is very
small.

When considering the quality of the approximation
obtained by the different PLA techniques, Fig. 2 illustrates
that, at an equivalent compression ratio (size), Sim-Piece
and Mix-Piece bring remarkable enhancements in terms
of the Maximum Absolute Error (MAX), i.e., the maximum
absolute deviation of the approximate values against the input
signal measurements. Moreover, our algorithms provide bet-
ter approximation, when considering the Mean Absolute
Error (MAE) and Root Mean Square Error (RMSE) scores,
surpassing even the performance of Linear [11], which uti-
lizes a best-fit line per segment to improve approximation
accuracy. This significant improvement can be attributed
to the joint representation, which enables our approaches to
represent a substantially greater number of similar PLA seg-
ments within the given space, as will be elaborated upon.
This is evident in Fig. 3 which portrays the segments of
Mix-Piece against the best earlier PLA algorithm (Mixed)
when the respective representations occupy the same space.
We see that Mix-Piece accommodates considerably more
segments within the same space compared to Mixed, leading
to a much more precise representation of the original values.
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Fig. 3 Thanks to its flexible grouping, Mix-Piece employs a con-
siderably greater number of similar segments within the same space
compared to the runner-up PLA algorithm (Mixed), leading to a signif-
icantly more accurate representation of the original values.

Fig. 4 We can group together the segments in green (Groupable Seg-
ments 1) and orange color (Groupable Segments 2) and represent them
jointly with Sim-Piece. Mix-Piece may form additional group-
ings by considering segments even when they do not share a common
starting point, as the case is with the two purple segments (Groupable
Segments 3)

The operation of Sim-Piece is based on the follow-
ing process. When considering a line segment, Sim-Piece
fixes its starting point to a quantized value that is within ε of
the original value. Then, we add subsequent data points to
the segment by maintaining a pair of slopes, i.e., the extreme
upper and lower slopes that satisfy the required approxima-
tion guarantees, until a point falls out of the area between
them. As any of the lines between the two slopes can approx-
imate the data points of the segment, we can find groups of
segments with intersecting sets of candidate lines and repre-

sent them jointly. The latter process is illustrated in Fig. 4.
The three segments in green color (Groupable Segments
1) and the two segments in orange (Groupable Segments
2) color have common starting points and similar slopes.
Therefore, we can group them to reduce the overall space
requirements of our representation. Sim-Piece computes
the optimal solution to this problem, coming up with the
minimum possible number of groups to induce impressive
compression ratios.

Figure4 also portrays two segments in purple color
(Groupable Segments 3), that have a similar slope but do not
share the same starting point. Consequently, if we grouped
only those segments that have common starting points, as we
do with Sim-Piece, the two purple (Groupable Segments
3) segments of Fig. 4 would remain ungrouped. Depending
on the properties of the time series, such instances of seg-
ments that share comparable slopes but have distinct initial
points could potentially present opportunities for achiev-
ing even greater space efficiency, which is not harnessed by
Sim-Piece.

To emphasize this aspect, Fig. 5 features two real datasets,
which will be further discussed in our experimental evalua-
tion. The starting point distribution of segments of the time
series of Fig. 5a is shown in b. As we can see, there are plenty
of segments per starting point for a considerable number of
groupings to be formed. However, this is not the case with
the time series illustrated in Fig. 5c. This time series includes
trend, and as we can see in Fig. 5d very few segments share
a starting point. Thus, it is obvious that forming groups with
Sim-Piece becomesmore difficult when dealingwith time
series that include trend.

To address this aswell as several additional challenges, we
propose here a variation of Sim-Piece, termed
Mix-Piece, that offers various performance improve-
ments. Mix-Piece employs a more versatile output format
than Sim-Piece, for better handling of time series that
include trend. This format allows for exploiting similarities
of line segments even when they do not share the same start-
ing point value and significantly enhances the induced space
savings. Additionally, Mix-Piece considers multiple can-
didate PLA segments when constructing a line segment, and
ultimately uses the one that produces the longest segment. In
this way, Mix-Piece generates fewer segments than Sim-
Piece, and attains an increased compression ratio. This results
in an even more accurate representation of the time series, as
is shown in Figs. 2 and 3, compared to the state-of-the-art in
PLA compression.

1.3 Summary of main findings

The performance gains our techniques achieve over a set of
several real-world datasets are evident, regardless of whether
we seek to maximize the space savings or to achieve high
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Fig. 5 Two time series, without (a) and with (c) trend, along with their
respective starting point distributions of line segments (b and d)

accuracy by setting a large or small value of ε, respectively.
More specifically, we show that our improvement over the
best known PLA approaches in terms of space requirements
[12, 29, 35], is consistent as ε grows, for values of ε that
reach 30% of the dataset’s range of values. In cases where
accuracy is more important, we show that for the same com-
pression ratio our algorithms produce approximations that
are significantlymore accurate for popular error metrics such
as MAE and RMSE. Moreover, we show that our novel
techniques outperform earlier PLA algorithms even when
we use general purpose compression algorithms to reduce
their requirements. On top of that, both Sim-Piece and
Mix-Piecemay also benefit from the use of such compres-
sion algorithms that help us reach even greater compression
ratio. Comparing the new Mix-Piece algorithm against
Sim-Piece, our results demonstrate that it offers between
3% and 74% relative improvement on the compression ratio
it achieves.

Finally, we investigate the execution time of Mix-Piece
and show that, despite its clear advantages in compression
ratio, it is virtually as fast asSim-Piece. Compared against
previous approaches, Mix-Piece is on average 35× and
4× faster than the second and third best approaches with
regard to space efficiency, respectively. In fact, the running
time of Mix-Piece is comparable to that of Swing algo-
rithm [12], which however offers very modest space savings.

We summarize here the key contributions of our proposed
compression algorithm. In particular, we:

– propose Mix-Piece, an extension of the Sim-Piece
lossy compression algorithm that significantly reduces
the space requirements of PLA by identifying similar
segments and merging their descriptions. Mix-Piece
consistently outperforms Sim-Piece due to the more
flexible grouping of a larger set of candidate PLA seg-
ments it takes into consideration. Our space gains allow
for significantly increasing the accuracy we can obtain
for the same compression ratio.

– show that the problem of grouping a set of candidate
segments is solved optimally, as Mix-Piece always
identifies the minimum number of groups required to
collectively represent them in the algorithm’s output.
Moreover, we show that for the same PLA segmenta-
tion, the output of Mix-Piece is probably at least as
small as that of Sim-Piece.

– demonstrate that by operating on independent groups of
PLA segments, Mix-Piece is very efficient in terms of
its running time while achieving better space-efficiency
than what earlier approaches can offer.

2 Preliminaries

Let us now outline the background that will be needed in
order to follow and understand our approach.

2.1 PLAmethods with error threshold�

PLA techniques read as input a potentially infinite stream of
timestamped values 〈ti , vi 〉i≥0 and generate a number of line
segments. For the setting we consider, these lines approxi-
mate the original values within a maximum error tolerance ε

selected by the application.
Key to PLA segmentation is to derive the location and

type of the knots [36, 38]. There are methods that enforce
continuity conditions [36] at the knots (joint knots [12, 17,
20]), methods that allow discontinuity [36] (disjoint knots
[12, 35, 38]) and techniques that actually consider both [29].

As mentioned in [36] the continuity requirement at the
knots increases the complexity of the problem. Our segment
matching algorithm can be adapted to work upon the output
of an existing PLA segmentation (with joint or disjoint knots)
by (1) adjusting the value at the starting knot, (2) reading the
existing values and calculating upper and lower slopes of
admissible approximation lines, for a given maximum error
threshold, and (3) in the case of joint knots, trimming the last
point of the segment, making it essentially disjoint [36].

For ease of exposition in the next section, we initiate
the discussion of our algorithm via a pre-processing step
(Sim-Piecephase1) using a greedy PLA algorithm, which
is an adaptation of Swing [12] that uses disjoint instead
of joint knots. Our segment matching algorithm operates
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Fig. 6 Angle-based PLA. The gray area denotes all possible line seg-
ments starting from 〈t1, v1〉 that approximate the original values vi
within ε

directly on the output of this greedy algorithm without fur-
ther modifications. In our exposition, a segment is described
by (1) the timestamp ti and value vi of its starting point, and
(2) the slope ai of its line.

2.2 Angle-based greedy PLA

Acommon approach for constructing an approximate seg-
ment with amaximum error guarantee is to calculate extreme
slope lines while adding new points. These lines help evalu-
ate whether a new point can be approximated by the current
segment, or is a break-up point that will trigger the creation
of a new segment.

Figure 6 illustrates a process that follows this approach
to approximate signal 〈〈t1, v1〉 , 〈t2, v2〉 , 〈t3, v3〉 , 〈t4, v4〉〉
using a fixed origin. This origin is set to be 〈t1, v1〉, i.e., the
first point of the signal. When adding 〈t2, v2〉, the process of
Fig. 6 creates an angle formed by the bounding slope lines au2
and al2 connecting 〈t1, v1〉 with 〈t2, v2 + ε〉 and 〈t2, v2 − ε〉,
respectively. This angle specifies all lines that may approxi-
mate the two points within error threshold ε. The next point,
i.e., 〈t3, v3〉 is more than ε away from both the upper and
lower slopes. Therefore, when adding this point we need
to reduce the angle so that the new slopes au3 and al3 pass
through 〈t3, v3 + ε〉 and 〈t3, v3 − ε〉, respectively. Finally,
adding 〈t4, v4〉 requires that the angle is further reduced, as
the approximations provided by al3 are more than ε away
from 〈t4, v4〉. Thus, al4 connecting 〈t1, v1〉 with 〈t4, v4 − ε〉
is set as the new lower slope. The upper slope is not updated,
as the approximations provided by au3 are less than ε away
from 〈t4, v4〉. The gray area of Fig. 6 bounded by au3 and al4
illustrates the final candidate lines that are less than ε away
from all the points of the signal. If the distance of a point

encountered was not within ε from either of the two slopes,
it would trigger the creation of a new segment.

There has been extensivework following an approach such
as the one described above, with the resulting segments being
joint (Swing [12]), disjoint (Slide [12]) or both (Mixed [29]).
In the case of disjoint knots, the break up point is set as
the origin of a new segment, whereas in the case of joint
knots the immediately previous point is used. Our suggested
approach is an adaptation of Swing that produces disjoint
knots with quantized associated values based on a maximum
error threshold, and exploits the angle formed by the upper
and lower slopes of each segment to represent them as inter-
vals of slope values. As we will explain, these intervals will
be used to merge the descriptions of different segments into
a compact representation.

2.3 Interval graphs

The gray area formed by the angle of slopes au3 and al4 in
Fig. 6 illustrates all the candidate lines that we may use to
describe the respective segment within the defined accuracy.
Thus, we can come up with an interval of slope values that
captures all possible lines within the gray area. Naturally, the
intervals of different segments will often intersect, enabling
us to represent them jointly. Wewill next present the theorem
that wewill use to justify ourmethod, alongwith the required
definitions, to ease the understanding of our approach.

Definition 1 Consider a set of intervals I = {I1, I2, . . . , In}
on a line for n ∈ N, where I j = [al j , au j ] and al j ≤ au j ,
for j ∈ N and j ≤ n. The interval graph G = (V , E)

formed by I contains one vertex v j for each interval I j , so
V = {v1, . . . , vn}, and there is an edge between vertices vi
and v j if and only if Ii and I j intersect, i.e., E = {(xi , x j ) |
Ii ∩ I j �= ∅}.
Definition 2 A vertex is called simplicial if its neighbors
form a clique, i.e., its neighbors are all linked to one another
by edges.

Definition 3 A perfect elimination scheme in a graph with n
vertices is an ordering v1, . . . , vn of the vertices such that vi is
simplicial in the graph that contains only vertices vi , . . . , vn .

Interval graphs have the following characterization [16] that
we are going to use later on to justify the optimality of our
method.

Theorem 1 A graph G is an interval graph, if, and only if, a
perfect elimination scheme exists in it.

3 Overview

Wenowdiscuss the details of our approach for high-precision
storage reduction of time series data that is based on the idea
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that the different line segments produced by PLA techniques
exhibit similarities. We first present a PLA technique that
produces sets of candidate lines for each segment; we call
these sets intervals. Then,we seek to group intervals that look
alike in terms of their slope as well as their starting point, by
identifying intersecting intervals. We provide algorithms for
both these procedures which constitute the two phases of our
Sim-Piece approach for highly accurate PLA with small
storage footprint. Furthermore,we provide variations on both
phases of Sim-Piece, to introduce our novel Mix-Piece
algorithm, that addresses additional challenges and offers
increased effectiveness.

3.1 Interval extraction

The first phase of Sim-Piece considers as input a data
signal in the formof a sequence of discrete data points 〈ti , vi 〉,
where i ∈ {1, . . . , n}, and an error threshold ε. The respective
pseudocode is given with Algorithm 1.

We use the first point of the signal as the first point of the
starting segment (Line 3). The number of discrete values that
the startingpoints of our segmentsmay take, canbe arbitrarily
large. However, we need to come upwith a limited amount of
discrete starting point values that multiple different segments
may share, so that we are able to jointly represent them. In
our context, we are interested in providing approximations
within an error threshold ε. Therefore, we do not need to
consider all the different original values. Instead, we can
apply a quantization function such as the following for a
value v, to come up with a quantized value b:

b = 
v/ε� × ε (1)

As an example, values 1.1 and 1.4 would both result in b = 1
for ε = 0.5. Using Eq. (1) we convert the first value vs to
the smallest multiple of ε that is within ε from the original
value vs (Line 4). We also initialize the upper (Line 5) and
lower (Line 6) slopes forming the angle of the segment with
the maximum and minimum possible values, respectively, so
that wemake sure the second point of the segment lies within
the angle. Then we proceed by processing subsequent points
in the signal, following the procedure discussed in Sect. 2.2
anddepicted inFig. 6.More specifically,we examinewhether
the distance of each point encountered is not within ε from
the angle formed by the bounding lines with slopes au and
al (Line 9). If so, we terminate the formation of the current
segment by producing an interval for starting point b denoted
by the final lower and upper slopes al and au and the initial
timestamp ts (Line 10), andwe repeat the process considering
the newly encountered point, i.e., 〈tc, vc〉, as the starting point
of the next segment. Otherwise, depending on the position
of the newly encountered point, we may need to update the
angle by lowering the upper bounding slope or increasing the

Algorithm 1: Sim-Piecephase1

Input: A data signal s: (ti , vi ) ∀i ∈ {1, . . . , n}, and an error threshold ε

Output: An associative array b_intervals, mapping each quantized b value
to a list of tuples

〈
al , au , t

〉

1 Function Sim-Piecephase1(s, ε)
2 b_intervals ← {{}, . . . , {}};
3 〈ts , vs 〉 ← s.next();
4 b ← 
vs/ε�ε;
5 au ← ∞;
6 al ← −∞;
7 while s.hasNext() do
8 〈tc, vc〉 ← s.next();
9 if vc > au (tc − ts ) + b + ε or vc < al (tc − ts ) + b − ε then
10 b_intervals[b].add(〈al , au , ts

〉
);

11 〈ts , vs 〉 ← 〈tc, vc〉;
12 b ← 
vs/ε�ε;
13 au ← ∞;
14 al ← −∞;

15 if vc < au (tc − ts ) + b − ε then
16 au ← vc+ε−b

tc−ts
;

17 if vc > al (tc − ts ) + b + ε then
18 al ← vc−ε−b

tc−ts
;

19 b_intervals[b].add(〈al , au , tc
〉
);

20 return b_intervals;

lower bounding slope. We achieve this by properly adjusting
values au (Lines 15- 16) and al (Lines 17- 18), respectively.

Following this procedure for all points of the signal, we
comeupwith a list of intervals associatedwith eachquantized
b value encountered in the signal. The elements of the final
lists comprise the upper and lower slope of each interval,
which form the angle of each respective segment as illustrated
in Fig. 6, as well as the initial timestamp of each segment.

3.2 Grouping lists of intervals

Using the intervals extracted through Algorithm 1, we aim
to find the optimal groups of intervals for each quantized b
value, so that we can represent similar intervals jointly and
induce space savings.

Figure 7a depicts the angles of five intervals that share a
common starting point b. We observe that the angles formed
by the intervals may overlap, and thus, there exist candidate
lines that may represent more than one interval. The flex-
ibility of using any of the candidate lines of each interval
–as they all satisfy the required approximation guarantees–
enables us to group different overlapping intervals to min-
imize the space requirements of their representation. More
specifically, our goal is to come up with the minimum num-
ber of groups of intersecting intervals for each starting point
b. A formal description of this problem follows.

Problem 1 Given a set of intervals I = {I1, I2, . . . , In}
as described in Definition 1, where al j and au j denote the
minimum and maximum slopes of interval I j = [al j , au j ],
respectively, partition I into disjoint sets, so that all intervals
in each set intersect, and the number of partitions is mini-
mized.
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Fig. 7 Sets of candidate lines for 5 line segments, depicted by the maximum and minimum possible slope for each segment (a), the respective set of
intervals (b), and the respective interval graph (c). There is no need to construct the interval graph, which is featured here only to ease understanding

In Fig. 7b we plot the sets of candidate lines of Fig. 7a
as intervals, so that the overlapping areas are more evident.
We observe that if we choose to group the interval [al2 , au2 ]
with [al3 , au3 ], and the interval [al1 , au1 ] with [al4 , au4 ] and
[al5 , au5 ] we will come up with a total of two groups. How-
ever, if we choose to group [al1 , au1 ] with [al3 , au3 ], we will
come up with three groups in total, as we will form one
with intervals [al4 , au4 ] and [al5 , au5 ] and one with a single
interval [al2 , au2 ]. That is, if we select to group [al1 , au1 ]
with [al3 , au3 ], we forfeit the possibility of grouping all three
[al1 , au1 ], [al4 , au4 ] and [al5 , au5 ] segments together, which
forces us to come up with at least three groups, instead of
just two, which is the optimal solution for this example.

The intersections among the different intervals can be rep-
resented evenmore clearly using the interval graph of Fig. 7c.
An interval [ali , aui ] is represented by vertex vi , and there
exists an edge between two vertices vi and v j if the respec-
tive [ali , aui ] and [al j , au j ] intervals are overlapping. In this
way, the problem of finding the minimum possible number
of groups of overlapping intervals becomes equivalent with
partitioning the vertices of the interval graph of Fig. 7c into
the minimum number of groups such that the vertices in each
group are all linked to one another by edges. This is a well
studied problem, known as the ‘minimum covering by dis-
joint completely connected sets or cliques’ [19]. As the graph
of Fig. 7c is an interval graph, there exists a perfect elimina-
tion scheme, which is very easy to determine. We simply
need to choose a simplicial vertex, i.e., one whose neighbors
are all linked to one another, and place it in the first position
of our scheme. We then delete this vertex from the graph and
look for a simplicial vertex in the remaining graph, which we
place in the second position of our scheme and also delete
from the graph. We continue doing this until the remaining
graph is empty. Indeed, we can see that vertex v2 is simpli-
cial, as it has only one neighbor, so we can choose it for the
first position of the elimination scheme. After deleting v2,

Algorithm 2: Sim-Piecephase2

Input: An associative array b_intervals, mapping each quantized b value to
a list of tuples

〈
al , au , t

〉

Output: A list groups containing one or more groups
〈
b, al , au , t

〉
for each

quantized b value
1 Function Sim-Piecephase2 (b_intervals)
2 groups ← {};
3 for intervalsbi ∈ b_intervals do
4 group ← 〈

b = bi , al = −∞, au = ∞, t = {}〉;
// sort by ascending al order

5 sort(intervalsbi );

6 for interval ∈ intervalsbi do
7 if interval.al ≤ group.au and interval.au ≥ group.al then
8 group.au ← min(group.au , interval.au );
9 group.al ← max(group.al , interval.al );

10 group.t .add(interval.t);

11 else
12 groups.add(group);
13 group ← 〈b = bi , al = interval.al , au = interval.au , t =

{interval.t}〉;

14 groups.add(group);

15 return groups;

we can choose v3, which is also simplicial in the remaining
graph, as it has only one neighbor left, i.e., v1. Then, we can
choose v1, as its two remaining neighbors, i.e., v4 and v5
are all linked to one another. Next, we can choose v4 and
finally v5. The final order of the perfect elimination scheme
described above is:

v2 → v3 → v1 → v4 → v5

An optimal algorithm for coming up with a perfect elim-
ination scheme is to sort the intervals in ascending order of
the lower point of their interval, ali [19]. As we can see in
Fig. 7b, this order of the intervals matches the order of the
perfect elimination scheme given above. Therefore, there is
no need to construct the actual interval graph. We can simply
follow the procedure described in Algorithm 2. We first ini-
tialize an empty list of groups to be produced (Line 2). Then,
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we iterate over the list of intervals of every b (Line 3), initial-
ize the first group (Line 4) and order the respective intervals
in ascending value of the lower point of their interval, ali
(Line 5). We go through the intervals in this order (Line 6)
and consider them for placement in the current group. If the
bounds of this group overlap with the bounds of the currently
considered interval (Line 7), we add the interval to the group,
by adjusting the bounds of the group accordingly and adding
the timestamp of the interval to the group’s list of times-
tamps (Lines 8–10). Otherwise, we close the group, placing
it to the list of groups to be returned at the end of Algorithm 2
(Line 12), and place the interval in question in a new group
(Line 13).

3.3 Mix-Piece

In this section, we propose enhancements on both phases
of Sim-Piece, to introduce our novel Mix-Piece algo-
rithm that provides significant improvements and addresses
additional challenges.

During the creation of a new segment, Algorithm 1 applies
Eq. 1 to the original value vs , to come up with a quantized
value b that is within ε from vs . We argue here, that instead
of using Eq. 1 we can also use Eq. 2:

b = �v/ε� × ε (2)

At the time of performing this quantization step, i.e., when
we create a new segment, we are not aware of the value of
the data points that follow and will be added to this segment.
However, the choice of using Eq. 1 or Eq. 2 to quantize the
starting point will have an impact on the length and quality
of the resulting segment. Algorithm 3 considers both cases
(Lines 4–5) and maintains two sets of intervals [al1 , au1 ] and
[al2 , au2 ], corresponding to each of the two quantized values
b1 and b2 as starting points, respectively. While processing
the data points of the time series, we examine whether the
current data point falls out of the area defined by each of the
two intervals (Lines 15–18). We keep track of which interval
comprises the most data points through variable length, that
is updated depending onwhether the data point fits in the area
definedby the intervals (Lines 19–22).Whenadata point falls
out of both the areas defined by the two intervals (Line 23),
we use the one that comprises themost data points (Lines 24–
27) and initiate the creation of a new segment (Lines 28–37).
If the data point falls in the areas defined by the intervals, we
update the two intervals accordingly (Lines 42–45).

Our experimental evaluation will reveal that this first
enhancement introduced with Mix-Piece results in an
improved compression ratio, as it reduces the number of seg-
ments that need to be grouped. Furthermore, we will demon-
strate a significant enhancement in terms of Mean Absolute
Error (MAE) and Root Mean Square Error (RMSE).

Algorithm 3: Mix-Piecephase1

Input: A data signal s:
〈
ti , vi

〉 ∀i ∈ {1, . . . , n}, and an error threshold ε

Output: An associative array b_intervals, mapping each quantized b value
to a list of tuples

〈
al , au , t

〉

1 Function Mix-Piecephase1(s, ε)
2 b_intervals ← {{}, . . . , {}};
3 〈ts , vs 〉 ← s.next();
4 b1 ← 
vs/ε�ε;
5 b2 ← �vs/ε�ε;
6 au1 ← ∞;
7 al1 ← −∞;

8 au2 ← ∞;
9 al2 ← −∞;

10 f loor ← true;
11 ceil ← true;
12 length ← 0;
13 while s.hasNext() do
14 〈tc, vc〉 ← s.next();
15 if vc > au1 (tc − ts ) + b1 + ε or vc < al1 (tc − ts ) + b1 − ε then
16 f loor ← f alse;

17 if vc > au2 (tc − ts ) + b2 + ε or vc < al2 (tc − ts ) + b2 − ε then
18 ceil ← f alse;

19 if f loor then
20 length + +;

21 if ceil then
22 length − −;

23 if ! f loor and !ceil then
24 if length > 0 then

25 b_intervals[b1].add(
〈
al1 , au1 , ts

〉
);

26 else

27 b_intervals[b2].add(
〈
al2 , au2 , ts

〉
);

28 〈ts , vs 〉 ← 〈tc, vc〉;
29 b1 ← 
vs/ε�ε;
30 b2 ← �vs/ε�ε;
31 au1 ← ∞;
32 al1 ← −∞;

33 au2 ← ∞;
34 al2 ← −∞;

35 f loor ← true;
36 ceil ← true;
37 length ← 0;

38 if vc < au1 (tc − ts ) + b1 − ε then

39 au1 ← vc+ε−b1
tc−ts

;

40 if vc > al1 (tc − ts ) + b1 + ε then

41 al1 ← vc−ε−b1
tc−ts

;

42 if vc < au2 (tc − ts ) + b2 − ε then

43 au2 ← vc+ε−b2
tc−ts

;

44 if vc > al2 (tc − ts ) + b2 + ε then

45 al2 ← vc−ε−b2
tc−ts

;

46 if length > 0 then

47 b_intervals[b1].add(
〈
al1 , au1 , ts

〉
);

48 else

49 b_intervals[b2].add(
〈
al2 , au2 , ts

〉
);

50 return b_intervals;

The second enhancement that Mix-Piece brings about,
is focused on the grouping phase, and addresses challenges
that Sim-Piece faces when dealing with time series that
include trend. Algorithm 2 aims to form groups of segments
that can be represented jointly. However, Sim-Piece con-
siders two segments for groupingonly if they share a common
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Algorithm 4: Mix-Piecephase2

Input: An associative array b_intervals, mapping each quantized b value to
a list of tuples

〈
al , au , t

〉

Output: A list groupsb containing one or more groups
〈
b, al , au , t

〉
for each

quantized b value, a list groups containing groups
〈
al , au , bt

〉
with

grouped intervals not in groupsb , and a list rest containing groups〈
al , au , bt

〉
with ungrouped intervals.

1 Function Mix-Piecephase2(b_intervals)
2 groupsb ← {};
3 ungroupedb ← {};
4 for intervalsbi ∈ b_intervals do
5 group ← 〈

b = bi , al = −∞, au = ∞, t = {}〉;
// sort by ascending al order

6 sort(intervalsbi );

7 for interval ∈ intervalsbi do
8 if interval.al ≤ group.au and interval.au ≥ group.al then
9 group.au ← min(group.au , interval.au );

10 group.al ← max(group.al , interval.al );
11 group.t .add(interval.t);

12 else if length(group) > 1 then
13 groupsb .add(group);
14 group ← 〈b = bi , al = interval.al , au = interval.au , t =

{interval.t}〉;
15 else
16 ungroupedb .add(group);
17 group ← 〈b = bi , al = interval.al , au = interval.au , t =

{interval.t}〉;

18 if length(group) > 1 then
19 groupsb .add(group);

20 else
21 ungroupedb .add(group);

22 groups ← {};
23 rest ← {};
24 group ← 〈

al = −∞, au = ∞, bt = {}〉;
// sort by ascending al order

25 sort(ungroupedb);
26 for interval ∈ ungroupedb do
27 if interval.al ≤ group.au and interval.au ≥ group.al then
28 group.au ← min(group.au , interval.au );
29 group.al ← max(group.al , interval.al );
30 group.bt .add(〈interval.b, interval.t〉);
31 else if length(group) > 1 then
32 groups.add(group);
33 group ← 〈interval.al , au = interval.au , bt =

{〈interval.b, interval.t〉}〉;
34 else
35 rest .add(group);
36 group ← 〈al = interval.al , au = interval.au , bt =

{〈interval.b, interval.t〉}〉;
37 if length(group) > 1 then
38 groups.add(group);

39 else
40 rest .add(group);

41 return
〈
groupsb, groups, rest

〉
;

starting point. This implies that there must be plenty of
segments per starting point for a considerable number of
groupings to be formed. This, however, is not the case with
time series that include trend, such as the one of Fig. 5c.Aswe
can see in the respective distribution of segments per starting
point shown in Fig. 5d, very few segments do actually share
a starting point.

Mix-Piece features a more versatile, bipartite grouping
phase describedwithAlgorithm 4. The first part (Lines 2–21)
is very similar to what Algorithm 2 of Sim-Piece does.

Fig. 8 The output of Sim-Piece (a) and Mix-Piece (b). We rep-
resent b values with dark gray, a values with light gray, timestamps
with white, and lengths of sequences (blocks, a values, b values or
timestamps) with black. The more versatile format of Mix-Piece
comprises three parts in its output. The first part is identical with the
output Sim-Piece, and the other two parts allow for increased savings

However, Mix-Piece gathers in set ungroupedb all inter-
vals that were not grouped with any other interval sharing a
common starting point, to be considered for grouping later
on. Indeed, during the second part of Algorithm 4 (Lines 22–
40) Mix-Piece attempts to group all remaining intervals,
regardless of whether they share a common starting point. Of
course, forming groups from these intervals necessitates stor-
ing their distinct starting values as well, resulting in slightly
less gains compared to the formation of groups in the first
part.

3.4 Output of Sim-Piece and Mix-Piece

The output of Algorithm 2 is a list of groups that comprise
the quantized value of b, the upper and lower bounds au and
al , and the starting-point timestamps of the grouped inter-
vals. As we can use any of the lines within the area defined
by the upper and lower bounds, we choose to use the line in
the middle of this area, with a = au+al

2 . This operation is
applied after the grouping phase, and thus, it does not have
any impact in the resulting compression ratio. The final out-
put of Sim-Piece uses the compact representation shown
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in Fig. 8a, that does not waste space to repeat identical b or
a values. It is evident that the proposed representation does
not alter the original PLA segmentation, i.e., the position
of knots, as denoted by the included timestamps. Moreover,
by construction, the maximum error threshold guarantee still
holds for the entire history of the time series.

The more versatile Mix-Piece comprises three parts in
its output, that ultimately provide increased savings. More
specifically, the first part of the output is identical with that
of Sim-Piece and features intervals that can be added in
groups of two or more intervals when groupings are formed
between intervals sharing a common starting point. The sec-
ond part represents intervals that are not included in the first
part but can be added in groups of two ormore intervals when
we form groupings regardless of their starting point. Finally,
the third part comprises those intervals that do not overlap
with any interval and cannot be grouped. The final output of
Mix-Piece is shown in Fig. 8b.

Every interval included in the second part of the out-
put generated by Mix-Piece was initially grouped into
a single-part group after the first grouping process of
Mix-Piece, which groups only intervals that share a com-
mon starting point. These intervals are allocated to the second
part of the output only if they are grouped with other inter-
vals with which they overlap, enabling them to be jointly
represented. Consequently, when dealing with the same set
of intervals, the output size of Mix-Piece cannot exceed
that of the Sim-Piece algorithm.

3.5 Optimality and complexity analysis

3.5.1 Analysis of Sim-Piece

The correctness and optimality of our segment grouping
approach is guaranteed by the perfect elimination scheme
property for interval graphs (Theorem 1). According to this
property, which serves as the greedy choice of Algorithm 2,
there is a certain order to examine the vertices, i.e., by ascend-
ing value of the lower point of their corresponding interval,
so that each group formed contains the maximum possible
number of vertices and no group is created unless it is really
necessary. Therefore, we come up with the minimum possi-
ble number of intervals.

Algorithm 1 groups the n input time series values in
batches of intervals, and then Algorithm 2 sort the batches of
intervals that share the same starting point (quantizedb value)
and groups them. For each interval produced byAlgorithm 1,
we store exactly 4 elements: the ali and aui that define the
slope of the interval, as well as the ti and vi that comprise
the timestamped value. Hence the processing of each data
point of the time series requires a constant amount of mem-
ory, and the number of intervals produced cannot exceed
n, hence O(n) space is needed. Moreover, as Algorithm 2

groups intervals, the space needed can only reduce, progres-
sively. Therefore, the space complexity of our approach is
O(n).

Regarding the time complexity of the end-to-end process,
Algorithm 1 is O(n) time, since it processes the input values
sequentially. Assume now that the number of intervals pro-
duced by Algorithm 1 is k. In the worst case with respect
to running time, all intervals may be placed in the same
batch, and the sorting step of Algorithm 2 will be computed
in O(k log k) time. In practice, input segments are dispersed
amongmultiple b values based on their starting points, result-
ing in even faster execution. The scanning and grouping of
the sorted lists require O(k) time.

3.5.2 Analysis of Mix-Piece

Mix-Piece differs from Sim-Piece in that i) it considers
more PLA segments while processing the time series and ii)
it performs additional groupings of intervals not considered
by Sim-Piece.

Regarding the first aspect, Algorithm 3 as explained, pro-
ceeds by considering two segments, keeping in the end the
one with the maximum number of points. While this neces-
sitates additional computations of slopes, it does not affect
the complexity of the process that is still O(n).

Algorithm4performs grouping on intervals initially based
on their starting point and, then for all that remain ungrouped
after the first step. Thewhole process is still dominated by the
sorting of the intervals in order to compute the perfect elimi-
nation scheme in each grouping stage. Thus, the complexity
is again O(klogk).

In practice, as our experimental evaluation will demon-
strate, the initial stage of Mix-Piece is indeed slower
than the corresponding phase in Sim-Piece, as antici-
pated. Nevertheless, due to Algorithm 3 generating fewer
segments compared to Algorithm 1, the subsequent stage of
Mix-Piece is often faster. This leads to both algorithms
having comparable execution times.

As discussed in Sect. 3.4, for the same set of input inter-
vals, the output of Mix-Piece cannot be larger than that
of Sim-Piece due to the treatment of intervals that could
not be grouped in the output of Algorithm 2.

Lemma 1 For the same set of input PLA intervals, the com-
pressed representation of the output of Algorithm 4 used by
Mix-Piece, is always smaller than that of Algorithm 2 of
Sim-Piece.

Due toAlgorithm3 considering a greater number of candi-
date lines during PLA segmentation, the number of intervals
forwarded to Algorithm 4 is reduced by 11% on average.
Consequently, this leads to additional space savings in the
output generated by Mix-Piece.
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Fig. 9 Compression ratio results varying error threshold ε

4 Experimental results

We implemented our algorithms using Java and tested their
performance against previous PLA algorithms. In this sec-
tion we first present the dataset and technical details on our
experiments. Then, we evaluate our algorithm by answering
the following questions: i)What is the compression ratio that
Sim-Piece and Mix-Piece achieve compared to earlier

approaches as we vary the desired error threshold? ii)What is
the level of accuracy our algorithms offer compared to other
PLA techniques? iii) Can we induce further savings through
general purpose compression? iv) How do the running times
of Sim-Piece and Mix-Piece compare to those of other
PLA algorithms?
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Table 1 Details about our time series datasets, including the number of measurements (length), the original binary size, the minimum value, the
number of decimal places, the range, the median value, and the standard deviation

Dataset Length Size (KB) Min value Decimal Range (×0.5%) Median σ

Places

Cricket 702,000 5484.38 −10.19918800 8 22.9 (0.115) −0.041 1.0

FaceFour 39,200 306.25 −4.68758570 8 10.6 (0.053) −0.098 1.0

Lightning 122,694 958.55 −1.78116300 8 24.9 (0.125) −0.236 1.0

MoteStrain 106,848 834.75 −8.63799570 8 17.2 (0.086) −0.003 1.0

Wafer 1,088,928 8507.25 −3.0539799 7 15.2 (0.076) 0.282 1.0

Wind speed 4,119,081 32,180.32 0.00 2 20.4 (0.102) 1.380 1.9

Wind dir 1,169,510 9136.8 0.00 2 360.0 (1.800) 186.850 107.2

Pressure 12,098,677 94,520.91 90.99386 5 13.1 (0.065) 101.125 3.2

BTCUSD 105,155 821.52 3882.22 2 25,404.1 (127,021) 9690.500 4240.2

ETHUSD 105,155 821.52 88.35 2 666.6 (3333) 243.570 142.9

SPX 1,807,286 14,119.42 1068.75 2 1629.3 (8.146) 1885.250 402.0

STOXX50E 1,122,336 8768.25 1924 0 1842.0 (9.210) 2988.000 419.3

4.1 Experimental setting

We ran our experiments on a computer with an Intel®

Core™i7-7700 processor, with a 3.60GHz Base Frequency
and a 4.20GHz Max Turbo Frequency, a 8MB L3 cache,
and a total of 16GB DDR4 2400MHz RAM. We imple-
mented algorithms Sim-Piece, Mix-Piece, PMC-MR
[25], SDT [1] and Swing [12] using Java and we used a C++
implementation for Slide [12], and Mixed [29] PLA algo-
rithms, which the authors of [29] have generously provided.
The output of all algorithms is in binary format and com-
prises for each segment an integer and a floating point value
for PMC-MR and Swing, an integer and two floating point
values for Slide and SDT, and an integer and either one or
two floating point values for Mixed.

We note that based on the observations made by the
authors of [29], Slide computes the minimum number of seg-
ments with disjoint knots for a maximum error bound and is
thus optimal space-wise in this setting [35].Moreover,Mixed
has been shown [29] to provide even better savings, as it fur-
ther considers joint knots.

Our dataset consists of 12 time series from four differ-
ent sources. In all experiments we use synthetic timestamp
sequences that start at 1 and increase by 1 at every data point.
The properties of our dataset are listed in Table 1, and the
different time series are thoroughly discussed below:

– UCR Time Series Classification Archive [3]

- Cricket: Accelerometer data taken from actors per-
forming cricket gestures.
- FaceFour: Face outlinesmodeled as time series data.

- Lightning: Transient electromagnetic events asso-
ciated with lightning using a suite of optical and
radio-frequency (RF) instruments.
- MoteStrain: Humidity and temperature sensor data.
- Wafer: A collection of inline process control mea-
surements recorded from various sensors during the
processing of silicon wafers for semiconductor fab-
rication.

– NEON datasets

- WindSpeed [32]: Wind speed observations made
by a wind monitor consisting of a propeller and vane
design on lake and river buoys.
- WindDirection [32]: Wind direction observations
made by a wind monitor consisting of a propeller
and vane design on lake and river buoys.
- Pressure [31]: Barometric pressure on the meteorol-
ogy station on the buoy in lakes and rivers.

– Cryptocurrencies’ exchange rates [33]

- BTCUSD: The USD exchange rate of Bitcoin in the
year 2020, broken down into per minute values.
- ETHUSD: The USD exchange rate of Ethereum in
the year 2020, broken down into per minute values.

– Stock market indexes [33]

- SPX: The Standard and Poor’s 500 stock mar-
ket index, representing 500 of the largest companies
listed on US stock exchanges, for the years 2010–
2017, presented as per-minute values.
- STOXX50E: The EURO STOXX 50 stock market
index, representing 50 major blue-chip companies
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from the eurozone, for the years 2010-2017, pre-
sented as per-minute values.

4.2 Compression ratio comparison

We start our evaluation by measuring the space required to
compress each of the 12 datasets. Figure9 shows the com-
pression ratio achieved by Sim-Piece and Mix-Piece
compared to earlier algorithms. We report the compression
ratio for varying error threshold ε values, expressed as a per-
centage of the total range of each dataset, listed in Table 1.
More specifically, we report results for 0.5% × range ≤
ε ≤ 5% × range for the first 7 datasets. However, for the
remaining five datasets, we employed narrower error thresh-
olds (0.05%×range ≤ ε ≤ 0.5%×range). This adjustment
was made to ensure that compression ratio values remained
within comparable ranges, given that the latter datasets were
inherently easier to compress using all PLA techniques.

We see in Fig. 9 that Mix-Piece clearly stands out as
the most space-efficient algorithm. Moreover, the improved
performance of Mix-Piece over earlier PLA approaches
is evident for all values of ε investigated.

We further observe that in all figures Mix-Piece pro-
vides larger space savings than our earlier Sim-Piece
algorithm. This is attributed to the following two alternative
strategies of Mix-Piece: i) the use of two possible starting
points for each segment, and ii) the more flexible grouping
of segments performed by the algorithm. The first strategy
of Mix-Piece creates a segment for each of the two pos-
sible starting points and ultimately uses the larger segment,
which naturally results in an improved overall compression
ratio. The second strategy of Mix-Piece attempts to form
additional groupings compared to Sim-Piece which may
lead to increased savings. The latter are most evident in cases
of time series that include trend. This is clear in the results
of Table 2 where we report the groupings performed after
the execution of Algorithm 4. We observe that for the first 7
datasets most of the groupings occur between segments that
share a common starting point. The respective reduction per-
centage is between 94.3% and 99.9%. On the contrary, the
intervals of the generated line segments for the last 4 time
series of our dataset that include trend, do not often overlap
with the intervals of other segments with the same start-
ing point. Thus, the respective reduction percentage is much
smaller, ranging between 21.5% and 54.6% for ε = 0.5% of
the dataset’s range. For these time series, we see that most
of the groupings are performed during the second part of
Algorithm 4 that groups segments regardless of their start-
ing point. The extra groupings performed by Mix-Piece,
as well as the improved representation for the segments that
remain ungrouped, contribute to the increased compression
ratio it offers. The output format that Mix-Piece uses for
the different types of groupings guarantees that the size of the

representation will not be larger than that of Sim-Piece
regardless of the number of additional groupings achieved.
However, the savings growwith this number. With regards to
the Pressure dataset, the reduction range is 76% for ε = 0.5%
and30.7%for ε = 5%of the dataset’s range,which translates
to notable savings in terms of compression ratio. When set-
ting ε = 5% of the dataset’s range for the last 4 datasets very
few segments are generated. However, it is evident that most
groupings again occur in the second part of Algorithm 4.

Table 3 presents the relative compression ratios of each
algorithm compared to Mix-Piece, the top-performing
algorithm, across different datasets. The values are calculated
using the rightmost ε parameter value from the correspond-
ing Fig. 9 graphs, and this parameter is explicitly mentioned
alongside the dataset names for clarity. The rightmost col-
umn of the table displays the average relative performance
over all datasets. The second-best algorithm, Sim-Piece,
achieves an average compression ratio of 82%, signifying
its commendable performance, as it is 18% below that of
Mix-Piece. In comparison,Mixed and Slide attain relative
compression ratios of 63% and 53%, respectively, compared
to Mix-Piece. SDT and PMC-MR exhibit subpar perfor-
mance acrossmost datasets. As a result, these two algorithms
were omitted from the rest of our experiments for brevity.

4.3 Quality of approximation

Both Sim-Piece and Mix-Piece are designed to offer
maximum error guarantees to each and every value of the
time series. Thus, it is worth exploring i) how the actual
Mean Absolute Error (MAE) compares to the maximum
error threshold used, and ii) what is the Root Mean Square
Error (RMSE) of the approximation. For the latter we used
an unmodified version for both algorithms, that does not seek
to optimize this metric by adjusting the computation of the
slope values accordingly.

In Table 4 we report results for all datasets and PLA tech-
niques. For each measurement, we compute the average of
datasets separately for ε=5% and ε=0.05%. Additionally,
we evaluate the percentage deviation of these averages from
Mix-Piece. We report MAE as a fraction of the dataset range
(MAEr%), in order to have a comparison of the obtained
approximation with respect to the maximum error thresh-
old ε used that is also shown for each dataset. We notice
that all methods provide approximations that are signifi-
cantly more accurate than the requested threshold. In fact,
the average MAEr% in all algorithms is about half of the ε

value requested. Moreover, the reported RMSE values are
very close to the measured MAE. This implies that there
is a very small deviation among the errors obtained on the
individual measurements. When compared to the other tech-
niques,Mix-Piece consistently delivers the smallestMAE
and RMSE scores, respectively. What’s remarkable is that it
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Table 2 Groupings performed during the execution of Algorithm 4 and respective reduction percentage

Dataset 0.5% 5%

# Of segments Grouped
(same starting point)

Rest
grouped

Not
grouped

# Of segments Grouped
(same starting point)

Rest
grouped

Not
grouped

Cricket 124,217 123,347 (99.3%) 818 52 13,993 13,914 (99.4%) 23 56

FaceFour 13,178 12,422 (94.3%) 743 13 2423 2298 (94.8%) 80 45

Lightning 16,271 15,780 (97.0%) 429 62 1385 1274 (92.0%) 53 58

MoteStrain 16,507 15,591 (94.5%) 850 66 4534 4482 (98.9%) 18 34

Wafer 62,435 61,342 (98.2%) 1004 89 29,212 29,089 (99.6%) 57 66

Wind Speed 1,455,674 1,455,130 (99.9%) 528 16 143,747 143,694 (99.9%) 24 29

Wind Dir 459,697 457,320 (99.5%) 2324 53 128,454 128,441 (99.9%) 2 11

Pressure 29,664 22,555 (76.0%) 6756 353 1106 340 (30.7%) 402 364

BTCUSD 832 212 (25.5%) 589 31 14 0 (0.0%) 2 12

ETHUSD 1480 520 (35.1%) 942 18 28 2 (7.1%) 8 18

SPX 1891 407 (21.5%) 1362 122 20 0 (0.0%) 0 20

STOXX50E 7182 3920 (54.6%) 3214 48 100 4 (4.0%) 24 72

Table 3 Relative compression ratio compared to mix-piece

Dataset

Cricket FaceFour Lightning MoteStrain Wafer Wind speed Wind Dir. Pressure BTCUSD ETHUSD SPX STOXX50E Average
Epsilon 5% 5% 5% 5% 5% 5% 5% 0.5% 0.5% 0.5% 0.5% 0.5%

Mix-Piece 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Sim-Piece 0.88 0.91 0.90 0.91 0.95 0.81 0.90 0.82 0.67 0.67 0.72 0.73 0.82

Mixed 0.52 0.65 0.65 0.51 0.39 0.49 0.44 0.73 0.80 0.77 0.85 0.75 0.63

Slide 0.44 0.50 0.53 0.44 0.37 0.44 0.39 0.57 0.68 0.66 0.72 0.64 0.53

Swing 0.26 0.42 0.28 0.33 0.27 0.18 0.26 0.26 0.25 0.27 0.12 0.18 0.26

SDT 0.20 0.26 0.25 0.20 0.16 0.19 0.16 0.29 0.30 0.28 0.33 0.28 0.24

PMC-MR 0.18 0.22 0.20 0.24 0.35 0.11 0.20 0.18 0.21 0.21 0.18 0.19 0.21

achieves this high level of accuracy while using considerably
less space, as depicted in Fig. 9, when compared to all other
techniques. To provide a clearer perspective on the impres-
sively improved accuracy of Mix-Piece, we present a plot
in Fig. 10, which illustrates theMAE values obtained by each
algorithm for the same approximation size, specifically for
theWafer dataset. It becomes evident that for equivalent out-
put sizes (x-axis values),Mix-Piece achieves significantly
lower MAE scores, resulting in PLA representations that are
substantially more accurate. Fig. 10 also reports the perfor-
mance of the Linear algorithm [11], that seeks to optimize the
approximation by using a best-fit line within each segment.
Impressively, both Sim-Piece and Mix-Piece surpass
its performance. Similar patterns were observed for the other
datasets, although those figures are omitted for brevity.

4.4 Impact of error threshold

We continue our investigation on the performance of
Sim-Piece and Mix-Piece, by examining the impact
of the error threshold ε on their compression ratio. For every

approach we measure the compression ratio achieved as ε

grows up to 50% of each dataset’s range. Larger values of ε

are not meaningful as they would enable us to represent the
entire signal using a single constant value. The performance
is similar for all datasets and thus, for brevity, we illustrate
(in logarithmic scale) the results for only two of our datasets
in Fig. 11.

We see that Sim-Piece and Mix-Piece maintain
their advantage over earlier approaches for very large val-
ues of ε, around 30% of the entire range. Therefore, not only
do our approaches provide improved space efficiency when
high accuracy is required, but they also outperform earlier
approaches when the error threshold is large. For values of ε

that are larger than 30% of the dataset’s range, only a handful
of PLA segments are produced by Angle-based PLA, result-
ing in fewer opportunities for grouping similar segments by
Sim-Piece and Mix-Piece. As a result, the Mixed and
Slide algorithms perform better. However, the accuracy in
such settings is clearly very low.
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Table 4 Compression Ratio (CR), measured MAEr%, MAE and RMSE for ε = 5% and ε = 0.5%

Epsilon Dataset

Cricket FaceFour Lightning MoteStrain Wafer Wind speed Wind Dir. Pressure BTCUSD ETHUSD SPX STOXX50E Average/ % Dev. from Mix-Piece
5% 5% 5% 5% 5% 5% 5% 0.5% 0.5% 0.5% 0.5% 0.5% 5% 0.5%

Mix-Piece CR 86.7 24.0 128.8 40.1 71.3 55.0 17.3 546.1 148.1 87.0 1,083.7 199.5 60.5 412.9

MAEr% 2.07% 2.27% 2.28% 2.33% 1.59% 2.40% 2.10% 0.22% 0.18% 0.19% 0.18% 0.19% 2.15% 0.19%

MAE 0.475 0.240 0.568 0.401 0.242 0.488 7.565 0.029 45.919 1.257 2.934 3.421 1.426 10.712

RMSE 0.565 0.284 0.658 0.473 0.317 0.581 9.140 0.034 55.494 1.516 3.532 4.129 1.717 12.941

Sim-Piece CR 74.8 20.9 115.4 35.6 61.4 40.8 15.0 412.0 85.1 52.0 643.0 123.5 52.0/-14% 263.1/-36%

MAEr% 2.21% 2.43% 2.26% 2.70% 2.75% 2.29% 2.46% 0.23% 0.20% 0.20% 0.19% 0.20% 2.44%/13% 0.20%/5%

MAE 0.506 0.258 0.563 0.464 0.418 0.467 8.841 0.030 50.420 1.347 3.142 3.681 1.645/15% 11.724/9%

RMSE 0.597 0.302 0.655 0.528 0.471 0.560 10.451 0.035 60.190 1.606 3.742 4.392 1.938/13% 13.993/8%

Mixed CR 45.2 15.6 83.8 20.4 27.6 27.2 7.6 396.2 118.2 66.9 924.0 149.4 32.5/-46% 330.9/-20%

MAEr% 2.32% 2.59% 2.47% 2.95% 2.86% 2.29% 2.64% 0.25% 0.20% 0.20% 0.19% 0.20% 2.59%/20% 0.21%/11%

MAE 0.532 0.275 0.615 0.507 0.434 0.466 9.521 0.032 49.567 1.339 3.089 3.601 1.764/24% 11.526/8%

RMSE 0.624 0.322 0.707 0.572 0.495 0.557 11.267 0.037 59.395 1.607 3.688 4.315 2.078/21% 13.808/7%

Slide CR 38.3 11.9 67.9 17.5 26.1 24.3 6.7 312.2 100.4 57.2 783.2 127.9 27.5/-55% 276.2/-33%

MAEr% 2.34% 2.65% 2.72% 2.89% 2.96% 2.41% 2.66% 0.24% 0.19% 0.20% 0.19% 0.20% 2.66%/24% 0.20%/5%

MAE 0.535 0.281 0.677 0.497 0.449 0.491 9.576 0.031 49.465 1.334 3.108 3.649 1.787/25% 11.517/8%

RMSE 0.626 0.327 0.765 0.562 0.507 0.583 11.320 0.036 59.268 1.602 3.706 4.366 2.099/22% 13.796/7%

Swing CR 22.8 10.2 36.6 13.4 19.6 9.8 4.4 140.5 36.7 23.3 127.0 36.4 16.7/-72% 72.8/-82%

MAEr% 2.47% 2.47% 2.44% 2.49% 2.02% 2.62% 2.29% 0.24% 0.24% 0.24% 0.23% 0.24% 2.40%/12% 0.24%/26%

MAE 0.567 0.262 0.608 0.428 0.307 0.533 8.233 0.032 59.938 1.611 3.812 4.392 1.563/10% 13.957/30%

RMSE 0.657 0.306 0.704 0.503 0.374 0.619 10.082 0.037 70.111 1.882 4.450 5.132 1.892/10% 16.322/26%

Fig. 10 The tradeoffs between quality, as assessed by Mean Abso-
lute Error (MAE), and space efficiency provided by each PLA method.
Notably, Mix-Piece outperforms all previously established tech-
niques

4.5 Supplementary compression techniques

Our next experiment focuses on the use of supplementary
compression mechanisms in conjunction with PLA, aiming
to further reduce the space requirements. More specifically,
we experimentedwith using delta encoding [39] on the times-
tamps of each PLA algorithm. Delta encoding results in
smaller numeric values that could be stored using variable-

byte encoding [41], reducing the size of their representation.
Another novel technique for reducing the size of a PLA rep-
resentation is to replace timestamps with indices that denote
the length of a segment. This idea has been explored in [11]
in the Single-Stream Protocol that uses 1-byte indices for
representing the length of a segment. The protocol also per-
mits compact representation of singleton values for segments
with length< 3. Based on the evaluation in [11] and code that
was kindly provided by the authors, we also present results
for using this protocol with the Slide algorithm (denoted as
Slide-SS). As a baseline we also provide results from passing
the whole binary output of each PLA algorithm through the
popular Zstandard [4] algorithm.

Figure 12 illustrates the space gains we obtain for all time
series of our dataset. We used as ε the smallest value con-
sidered for each dataset in the results in Fig. 9. We see that
Zstandard does help increase the compression ratio of all
approaches, offering additional space savings.However, even
with the benefit of using an additional general purpose com-
pression algorithm, none of the earlier PLA approaches is
able to compete against our newly proposed Mix-Piece
algorithm, which clearly offers a better compression ratio
without any added help. The savings produced from employ-
ing delta-encoding are notably substantial, primarily owing
to the significant presence of timestamps within a PLA out-
put. The reduction in the binary representation of these
timestamps leads to gains surpassing those achieved by a
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Fig. 11 Exploring larger error tolerances. Mix-Piece and Sim-Piece outperform earlier approaches up to very large values of ε

Fig. 12 Effect of applying supplementary compression to the output of PLA algorithms

generic compression algorithm. The Single-Stream proto-
col provides comparable results to delta encoding. Overall
the combination of Mix-Piece with delta encoding of the
timestamp values in its output provides the best compression
gains.

4.6 Execution time

Table 5 reports the time required to process each of the
time series datasets by the PLA algorithms at three dis-
tinct error thresholds (0.05%, 0.5%, and 5%). The reported
results represent the average times calculated from 25 execu-
tions. Additionally, for Sim-Piece and Mix-Piece we
present the total time required, alongwith a breakdown of the
time spent on each of their two phases. Lastly, we calculate
the average of execution time per PLA method and ε, and
determine the percentage deviation of these averages from
Mix-Piece.

From the data presented in Table 5, a notable observation
is thatMix-Pieceoutperforms the second-best approach in
terms of compression ratio, i.e., Mixed, by at least one order
of magnitude in speed. When comparing Sim-Piece and
Mix-Piece it becomes apparent that Mix-Piece does
exhibit a slight decrease in speed. Specifically, during Phase
1 of Mix-Piece, the process of managing and updating
two intervals results in a minor slowdown. However, Phase 2
shows slightly improved speed on average due to the reduced
number of segments considered. Moreover, our results indi-
cate that the performance of Mix-Piece is, in most cases,
faster than the Slide algorithm as well.

The Swing algorithm, that provides theworst compression
ratio among the approaches investigated here, is shown to be
the fastest approach. However, the results of Table 5 clearly
show that the execution time of Mix-Piece decreases as
the value of ε grows, due to the smaller number of seg-
ments produced during Phase 1 of the algorithm. Thus,
Mix-Piece becomes much more efficient as the value of
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Fig. 13 Execution time (amortized per dataset record) vs compression ratio tradeoff

ε grows, providing significantly better compression ratio for
all possible error-thresholds values (e.g., Fig. 11).

The overall superiority of Mix-Piece is evident in
Fig. 13, that illustrates the trade-off between compression
time and compression ratio achieved for all algorithms and
datasets used in our experiments. To address the varying
dataset lengths (as detailed in Table 1), we normalize the
execution time of each algorithm by dividing it by the length
of the corresponding dataset. In Figs. 13a and c, we use
the smallest ε value considered for each dataset from the
results in Fig. 9 for the datasets without trend (13a) and with
trend (13c), respectively. Conversely, in Fig. 13b, d, we uti-
lize the largest ε value. We clearly see how Mix-Piece
provides impressive space savings while also being almost
equivalently efficient with the fastest approach. The findings
depicted in Fig. 13 establish our algorithm as the undisputed
preferable option for space-efficient approximation of time
series.

5 Related work

We review here existing approaches that are used to approx-
imate time series data. We also discuss compression tech-
niques studied in relevant fields, as well as two lossless
compression algorithms.

An optimal algorithm for approximating sensor data using
Piecewise Constant Approximation is given in [25]. A cache
filter is used, which predicts that the next data point will have
a value within the error threshold from the previous one.
Thus, a new data point needs to be recorded only when it
violates the error constraint. A similar approach is discussed
in [34].

Elmeleegy et al. [12] propose Swing and Slide, a novel
joint- and a disjoint-segment PLA algorithm, respectively.
Similar algorithms had been independently discovered in
earlier works, by Gritzali and Papakonstantinou [17] and
O’Rourke [35]. Swing constructs the longest possible line
segment starting from a fixed origin point by adjusting two
bounding slope lines until reaching a break-up point, which
will generate a new joint segment, starting from the last point
of the previous segment. Slide filters are different as they gen-
erate disjoint segments as an approximation for the original
data points. This gives themmore flexibility at the expense of
having to store an additional value for each segment. Updat-
ing the bounding slope lines can be optimized with the use of
the convex hull of the observed data points, which allows for
checking only against the points of the convex hull, instead of
the significantly larger number of all the data points observed
in the current filtering interval.

Swinging Door Trending (SDT) is a earlier algorithm
similar to Swing [1]. It involves managing two sloping
lines, upper and lower, each pivoting in opposite directions
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Table 5 Execution time (in ms.) for 0.5% and 5% Epsilon

Epsilon Dataset

Mix-Piece Cricket FaceFour Lightning MoteStrain Wafer Wind speed Wind Dir. Pressure BTCUSD ETHUSD SPX STOXX50E Average/ % Dev. from Mix-Piece

5% Phase 1 14.16 1.03 2.94 1.69 16.71 50.06 26.69 79.30 1.84 1.75 39.96 11.63 20.65

Phase 2 7.77 0.70 0.39 1.27 9.68 65.06 58.21 0.45 0.01 0.02 0.02 0.06 11.97

Total 21.93 1.73 3.34 2.96 26.40 115.12 84.89 79.75 1.86 1.77 39.98 11.69 32.62

0.5% Phase 1 21.08 2.87 4.97 4.75 29.63 242.89 60.41 141.50 2.37 2.38 17.73 14.92 45.46

Phase 2 55.93 4.18 5.21 5.50 22.35 1,000.74 272.83 9.72 0.25 0.43 0.59 2.14 114.99

Total 77.00 7.05 10.19 10.25 51.98 1,243.63 333.23 151.22 2.62 2.81 18.32 17.06 160.45

0.05% Phase 1 39.66 2.25 6.23 4.13 24.83 282.63 93.60 192.96 3.75 5.99 30.33 30.73 59.76

Phase 2 170.49 6.27 14.45 14.13 70.47 1,375.93 361.35 341.82 4.56 7.62 28.18 70.21 205.46

Total 210.15 8.52 20.67 18.26 95.30 1,658.56 454.95 534.78 8.31 13.60 58.51 100.94 265.21

Sim-Piece

5% Phase 1 9.51 0.78 2.51 2.28 9.33 39.29 13.38 88.60 1.61 1.74 7.46 8.76 15.44/-25%

Phase 2 7.51 0.97 0.49 1.60 13.21 96.69 66.97 0.39 0.00 0.01 0.01 0.04 15.66/31%

Total 17.02 1.75 2.99 3.88 22.54 135.98 80.35 88.99 1.61 1.75 7.47 8.80 31.09/-5%

0.5% Phase 1 9.88 1.49 2.33 1.80 10.12 117.32 32.76 82.44 1.86 2.01 12.85 11.16 23.83/-48%

Phase 2 60.78 4.50 6.13 6.41 27.52 1116.66 280.22 11.78 0.18 0.36 0.49 2.34 126.45/10%

Total 70.66 5.99 8.46 8.21 37.65 1233.98 312.98 94.22 2.05 2.37 13.34 13.50 150.28/-6%

0.05% Phase 1 22.91 1.54 2.77 2.66 13.88 130.10 49.69 135.83 2.40 2.83 20.96 20.46 33.84/-43%

Phase 2 165.80 5.59 14.62 13.39 75.18 1395.32 324.72 414.57 4.12 5.98 30.44 74.00 210.31/2%

Total 188.71 7.13 17.39 16.05 89.06 1525.42 374.41 550.40 6.53 8.81 51.40 94.46 244.15/-8%

Mixed

5% 526.80 30.25 81.62 87.83 766.11 2759.57 952.19 6750.19 63.45 70.63 976.49 658.26 1,143.62/3,406%

0.5% 632.16 40.76 96.93 96.20 824.48 4274.98 1261.89 7799.10 67.18 69.54 1,075.86 711.22 1,412.52/780%

0.05% 771.77 49.71 122.48 116.26 861.94 4536.06 1341.92 7561.32 95.63 100.50 1,350.47 986.13 1491.18/462%

Slide

5% 74.62 5.96 11.17 14.74 142.33 348.48 144.91 657.67 4.59 4.89 68.17 48.04 127.13/290%

0.5% 107.55 7.03 15.04 17.40 141.07 746.75 222.07 874.75 7.68 8.64 99.20 81.32 194.04/21%

0.05% 138.56 7.92 21.18 20.37 138.18 796.18 235.74 994.31 15.41 16.82 189.22 152.77 227.22/-14%

Swing

5% 19.94 1.18 4.04 2.18 23.63 108.25 50.65 175.87 3.48 3.37 29.73 18.38 36.73/13%

0.5% 22.99 1.88 3.05 3.09 22.54 293.48 98.48 176.72 3.50 2.51 29.92 19.48 56.47/-65%

0.05% 65.29 5.41 6.37 3.73 46.26 364.86 102.91 324.16 4.83 4.39 39.65 44.34 84.35/-68%

(counter-clockwise and clockwise) as it processes incoming
data points. By utilizing these sloping lines, the algorithm
calculates a parallelogram with a longitudinal trend line in
the center. This helps delineate an area of input points that fall
within the maximum allowable distance from the trend line.
GreedyPLR [42] is a variant of Swing inwhich the point used
to swing up and down is set to be the intersection of the upper
and lower bounding slopes, instead of the starting point of a
segment. This variation provides a wider angle than Swing
while preserving a worst-case O(1) complexity. Similar to
Slide [12] and the work in [35], OptimalPLR [42] uses con-
vex hulls to find the optimal PLA with regard to the number
of line segments using only disjoint segments and may offer
faster processing time [10].

Hakimi and Schmeichel [20] solve optimally the continu-
ous PLA problem, in which the approximation segments are
forced to form a continuous function. This allows for rep-

resenting the segments with two values, instead of the three
required when using disjoint segments. The process is sim-
ilar with that of OptimalPLR; however, each new segment
starts from the previous generated line instead of the break-
up point. The work in [20] is based on an algorithm proposed
by Imai and Iri [21]. A variation of the work in [20] is given
in [11], where a simple regression model is used to obtain
the best-fit line at the cost of increased complexity.

Luo et al. [29] introduce the problem of mixed-type
PLA, aiming to optimize the representation size through
an adaptive solution that uses a mixture of joint and dis-
joint segments. Their novel approach allows for enjoying
the best of two worlds, i.e., the cheaper representation of
joint segments and the fewer number of segments produced
by disjoint-segment approaches. A dynamic programming
algorithm is presented that finds the optimal sized PLA in
under these settings. Moreover, the authors avoid wasting a
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bit for each segment to differentiate between joint and dis-
joint segments. Instead, the proposed representation exploits
the strictly increasing sequence of positive timestamps and
uses negative values to indicate a disjoint segment.

Compressing time series data in streaming applications is
a computation step that inherently introduces latency. Most
algorithms do not take into consideration, for example, how
often should the calculated compressed representation be
output [10, 11]. PLA techniques face this issue as they inher-
ently try to group multiple incoming observations into a
segment as large as possible. Similarly, at the receiving end-
point, running the reconstruction phase, the receiver often
may need to wait for the next segment to reconstruct the
previous one. Notably, the work in [10, 11] proposes stream-
ing protocols as algorithmic implementations of several state
of the art PLA techniques (joint/disjoint or mixed). Our
Mix-Piece algorithm as a two-step process, introduces
additional latency in the output, as the final grouping of the
segments necessitates the completion of the sorting phase.
Nevertheless, for applications that require low-latency access
to the compressed time series values, one may tap into the
output of the first phase of the algorithm, that is essentially a
standard disjoint PLA representation and utilize techniques
such as those discussed in [10, 11] to reduce the perceived
latency.

Compression of time series has been studied in the con-
text of other work as well. The authors of [7, 8] proposed
a technique that exploits the correlation and redundancy
among multivariate sensor readings to construct a dictionary
of real measurements, used for encoding piece-wise linear
correlations among the collected data values. [9, 14] extend
these techniques to work in a distributed setting of network-
connected nodes, while also accounting for the presence of
outliers. In [44], the authors propose an approach for effi-
ciently processing time series similarity matching queries,
by dividing time series into a fixed number of equal sized
segments. Guerts [13] focuses on classification of time series
and uses regression trees to perform piecewise constant mod-
eling of temporal signals. Patterns are extracted from these
models and are combined in decision trees to give inter-
pretable classification rules.

In the field of lossless time series compression, Gorilla
[37] is a compression algorithm, particularly suited for
floating-point time series in which the neighboring data
points do not change significantly. Timestamps and values
are compressed separately, similarly to other time-aware
schemes [27]. BUFF [28] uses a byte-oriented columnar stor-
age representation for compressing bounded, low-precision
floating values. A recent lossy compression technique,
MOST [43], has been shown to improve compression by
identifying outlier values in the time series, setting them
aside and optimizing their encoding via a novel quantization
technique. This is orthogonal to our work as the core idea

of Sim-Piece and Mix-Piece is to group similar PLA
segments. For lossless compression, the Chimp [26] algo-
rithm has been shown to be very competitive with lossy PLA
approaches in terms of space requirements. Our algorithms
are motivated by the impressively low space requirements of
Chimp and achieve significant improvements with regards to
the state-of-the-art in PLA algorithms, offering better com-
pression thanChimp, evenwhen the precision error threshold
is set extremely low.

Compression of time series data exhibits similarities with
the problem of constructing histograms for approximating
frequency distributions. For a given space constraint both
problems can be solved optimally employing a straightfor-
ward but time-consuming dynamic programming algorithm,
as highlighted in [22]. Motivated by wavelets, other tech-
niques exploit a hierarchical decomposition of the data space
[23, 30] to increase the accuracy of the histogram synopsis.
Some approaches also consider data uncertainty [5, 6], as is
often the case with sensors readings that produce time series
data. Although constructing histograms is typically treated
as an offline task, there are methods available to adapt to
rapidly changing data [15, 18].

6 Conclusions

In this paper, we have introduced innovative approaches
for identifying similarities among line segments gener-
ated by a Piecewise Linear Approximation scheme. These
approaches aim to create a unified, efficient representation
for multiple segments. Our proposed algorithm, referred to
as Mix-Piece builds upon a previously published method
(Sim-Piece) in novel ways, yielding substantial and con-
sistent improvements. These improvements were validated
across a variety of datasets with differing characteristics.

Our flexible approach to grouping and representing line
segments within the output of Mix-Piece allows us to
achieve compression ratios that surpass those of existing
state-of-the-art PLAalgorithms.Consequently,Mix-Piece
produces PLA approximations that enable the compact rep-
resentation of large time series with high accuracy and
improved efficiency in terms of both storage space and com-
pression speed.
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