
Leading & Managing in the Digital Era (LMDE 2023), Athens, Greece 1

COMPRESSING TIME SERIES DATA

Xenophon Kitsios1, Panagiotis Liakos1, Katia Papakonstantinopoulou1, Yannis Kotidis1

1Athens University of Economics and Business, Greece

Keywords: Time series, Compression, Internet-of-Things

Introduction

With the emergence of the Internet of Things (IoT) enormous amounts of streaming, timestamped

datasets are being generated. Sensors from smart wearables, smart cities, autonomous cars, agricultural

facilities etc., produce time-series data which needs to be collected centrally in order to be later analyzed.

Time-series data is any data recording associated with a specific time stamp. Beyond IoT applications,

time series are encountered in other domains, such as finance (stock prices, commodity prices, exchange

rates), e-commerce (website traffic, sales volume, conversion rates), health care (electrocardiogram,

blood pressure monitoring), social networks (user engagement, post frequency, sentiment analysis) and

more.

Traditional databases can be used to store and query time-series data. However, they lack specific

optimizations when processing consecutive data values that are often related. Essentially, each input

data and its timestamp are processed separately, resulting in bottlenecks in data ingestion rates and

storage requirements. As a result, Time Series Databases (TSDBs) have been introduced to facilitate

storage and querying of large time series datasets. TSDBs support time-based queries and analytics,

such as filtering, aggregation, and statistical analysis of time-series data. Moreover, TSDBs offer

specialized data compression algorithms, which allow them to handle large and complex time-series

datasets. Based on the independent website DB-Engines the top-5 ranked TSDBs are: 1) InfluxDB, 2)

Kdb+, 3) Prometheus, 4) Graphite, and 5) TimescaleDB.

Due to the popularity of time-series data, many compression techniques have been proposed over the

years. Depending on the application requirements, a lossless or a lossy compression technique can be

used. The former reduces the size of data without loss of information, whereas the latter aims for much

larger space savings while tolerating a bounded maximum error. Lossless time series compression

techniques are used in applications where exact, detailed data values are needed. On the other hand,

lossy techniques are more suitable for applications that are not particularly interested in individual exact

values but rather seek to find and analyze the overall shape, trends, and characteristics of the data.

Examples include seasonality detection, clustering, forecasting and similarity search. Traditional

compression algorithms, i.e., LZ4, LZSS, ZStd etc., are not generally used for compressing time series

data due to their slow running times that affect data ingestion rates and query performance. Specific

compression algorithms oriented on time-series data include lossless techniques like Gorilla (Pelkonen

et al., 2015), Chimp (Liakos, Papakonstantinopoulou and Kotidis, 2022) and Snappy (Google, 2011), or

lossy algorithms such as Piecewise Aggregate Approximation (PAA) (Keogh et al., 2001) and Piecewise

Linear Approximation (PLA) (Hakimi and Schmeichel, 1991).

Sim-Piece Algorithm

Piecewise Linear Approximation (PLA) is a fundamental data compression technique dating back to the

1960s, commonly used to approximate time-series data. PLA algorithms represent time-series

measurements using a sequence of line segments, while keeping the approximation error within a

predetermined acceptable threshold. Clearly, these algorithms are associated with a trade-off between

space efficiency and precision loss, i.e., the space savings grow with the value of the error threshold.

Compressing Time Serie Data

Leading & Managing in the Digital Era (LMDE 2023), Athens, Greece 2

The proposed Sim-Piece (Kitsios et al., 2023) is a novel approach for PLA that seeks to exploit

similarities among the line segments produced. Unlike previous PLA techniques, Sim-Piece comes up

with lossy compressed representations that provide impressive space savings, even in cases where the

acceptable error threshold is very small.

When constructing a line segment, Sim-Piece fixes its starting point to a quantized value that is within

a user input error of the original value. Then, we add subsequent data points to the segment by

maintaining a pair of slopes, i.e., the extreme upper and lower slopes that satisfy the required

approximation guarantees, until a point falls out of the area between them. As any of the lines between

the two slopes can approximate the data points of the segment, we can find groups of segments with

intersecting sets of candidate lines and represent them jointly, to reduce the overall space requirements.

Sim-Piece computes the optimal solution to this problem, coming up with the minimum possible number

of groups to represent the PLA segments. As a result, our technique achieves impressive compression

ratios that vastly improve the current state-of-the-art approaches.

Evaluation of Sim-Piece against state-of-the-art PLA methods

Through extensive experiments on various datasets from diverse sources, we have demonstrated that

Sim-Piece manages to achieve outstanding results compared to existing compression algorithms for time

series data. In a lossy compression algorithm, the decompressed data values are within a maximum error

threshold from the original values. This error threshold is defined by the application and is used to

balance the tradeoff between the size of the data representation and the required accuracy of the

computations. As an example, Table 1 shows the compression ratio achieved by Sim-Piece and three

state-of-the-art PLA techniques, i.e., Mixed (Luo et al, 2015), Swing (Elmeleegy et al., 2009) and Slide

(Elmeleegy et al., 2009), on five real datasets (Dau Hoang Anh et al, 2018 and NEON, 2022). The

maximum error threshold used was 5% of each dataset range of values. Clearly Sim-Piece stands out as

the most space-efficient algorithm, offering compression ratios that are far superior to other leading

techniques.

 PLA Compression Algorithm

 Sim-Piece Mixed Slide Swing

D
a
ta

se
t

Cricket 74.8 45.2 38.3 22.8

FaceFour 20.9 15.6 11.9 10.2

Lightning 115.4 83.8 67.9 36.6

Wind Speed 40.8 27.2 24.3 9.8

Wind Direction 15.0 7.6 6.7 4.4

Table 1: Compression Ratio of various PLA techniques.

Furthermore, we explored the quality of the approximation obtained by each method. We used two

popular metrics to measure quality (i) Mean Absolute Error (MAE) and (ii) Root Mean Square Error

(RMSE). Compared to the other techniques, Sim-Piece provides the second-best average MAE and

RMSE values at a significantly higher compression ratio. Moreover, for the same space, Sim-Piece

clearly outperforms all existing PLA techniques in terms of both MAE and RMSE.

Compressing Time Serie Data

Leading & Managing in the Digital Era (LMDE 2023), Athens, Greece 3

Sim-Piece against Lossless Compression Techniques

When using lossless compression algorithms, the decompressed data are exactly identical as the original

data. This strict requirement comes at a cost, as it limits opportunities for compressing the data further.

As a result, lossy compression can achieve significantly higher compression ratios as some information

is sacrificed, in a controllable manner. In some cases, sacrificing accuracy is indeed beneficial, as a form

of data denoising.

In a TSDB, the reduced size of a lossy data representation reduces disk access times, as more relevant

data can be kept in memory when processing a user query over voluminous datasets. The size of the

data representation also plays a significant role in IoT applications, where remote sensory data needs to

be transmitted to a central location. An IoT sensor that transmits its data over a wireless network by

encoding them first with a lossy compression algorithm, will save network bandwidth and reduce energy

transmission cost. Thus, lossy compression improves the scalability of IoT systems by reducing the

amount of data that needs to be processed and stored (Deligiannakis, Kotidis and Roussopoulos, 2007;

Deligiannakis and Kotidis, 2005). It can enable more IoT devices to be connected to a network without

overloading the network or data storage resources. In addition, IoT devices that are powered by batteries

can minimize energy consumption as they can keep their radios in a low-power state for longer intervals

(Giatrakos et al., 2013). Additionally, lossy compression can also reduce the computational resources

needed to process and analyze streaming time-series data in a decentralized system, which can further

conserve energy.

In the field of lossless time series compression, Gorilla is a compression algorithm particularly suited

for floating-point time series. Due to its effectiveness, Gorilla is the preferred algorithm used in most

existing TSDBs. A more recent Chimp lossless compression algorithm has been shown to outperform

Gorilla and be very competitive in terms of space requirements with lossy PLA approaches. Our Sim-

Piece algorithm is motivated by the impressively low space requirements of Chimp and achieves

significant improvements with regards to the state-of-the-art in PLA algorithms, offering better

compression than Chimp, even when the precision error threshold is set extremely low.

Table 2 presents the maximum error needed so that Sim-Piece produces an equivalent compression ratio

to that of Chimp. The maximum error is expressed as the percentage of the range of the dataset. For

example, the range of Wind Direction is 360° and maximum error is 360° × 0,44% = 1,584°. The data

from this table suggest that Sim-Piece, unlike existing lossless algorithms, can provide highly accurate

data representations while matching the performance of the best lossless streaming algorithm. Increasing

the maximum error threshold beyond the depicted numbers results in significantly higher compression

ratios for Sim-Piece, often by two orders of magnitude, compared to the lossless algorithm.

Dataset Maximum Error

Cricket 0,15%

FaceFour 1.25%

Lightning 0.12%

Wind Speed 0.43%

Wind Direction 0.44%

Table 2: Sim-Piece Maximum Error per Dataset that produces an equivalent compression ratio to that

of Chimp.

Compressing Time Serie Data

Leading & Managing in the Digital Era (LMDE 2023), Athens, Greece 4

References

Kitsios, X., Liakos, P., Papakonstantinopoulou, K. and Kotidis, Y. (2023), ‘Sim-Piece: Highly Accurate

Piecewise Linear Approximation through Similar Segment Merging’, Proceedings of the VLDB

Endowment, 16(8), pp. 1910-1922.

Pelkonen, T., Franklin, S., Teller, J., Cavallaro, P., Huang, Q., Meza, J. and Veeraraghavan, K. (2015),

‘Gorilla: a fast, scalable, in-memory time series database’, Proceedings of the VLDB Endowment,

8(12), pp. 1816–1827.

Liakos, P., Papakonstantinopoulou, K. and Kotidis, Y. (2022), ‘Chimp: efficient lossless floating point

compression for time series databases’, Proceedings of the VLDB Endowment, 15(11), pp. 3058–

3070.

Google (2011) Snappy. Available at: https://google.github.io/snappy/ (Accessed: 10 March 2023).

Keogh, E., Chakrabarti, K., Pazzani, M. and Mehrotra, S. (2001), ‘Dimensionality reduction for fast

similarity search in large time series databases’, Knowledge and Information Systems, 3(3), pp. 263–

286.

Hakimi, S.L. and Schmeichel, E.F. (1991), ‘Fitting polygonal functions to a set of points in the plane’,

CVGIP: Graphical Models and Image Processing, 53(2), pp. 132–136.

Luo, G., Yi, K., Cheng, S.-W., Li, Z., Fan, W., He, C. and Mu, Y. (2015), ‘Piecewise linear

approximation of streaming time series data with max-error guarantees’. 2015 IEEE 31st

International Conference on Data Engineering.

Elmeleegy, H., Elmagarmid, A.K., Cecchet, E., Aref, W.G. and Zwaenepoel, W. (2009), ‘Online piece-

wise linear approximation of numerical streams with precision guarantees’, Proceedings of the VLDB

Endowment, 2(1), pp. 145–156.

Deligiannakis, A., Kotidis, Y. and Roussopoulos, N. (2007), ‘Dissemination of compressed historical

information in sensor networks’ The VLDB Journal, 16(4), pp. 439–461.

Deligiannakis, A. and Kotidis, Y. (2005), ‘Data reduction techniques in sensor networks’, IEEE Data

Engineering Bulletin, Volume 28(1), March 2005.

Giatrakos, N., Kotidis, Y., Deligiannakis, A., Vassalos, V. and Theodoridis, Y. (2013), ‘In-network

approximate computation of outliers with quality guarantees’, Information Systems, 38(8), pp. 1285–

1308.

Dau Hoang Anh, Keogh Eamonn, Kamgar Kaveh, Yeh Chin-Chia Michael, Zhu Yan, Gharghabi

Shaghayegh, Ratanamahatana Chotirat Ann, Yanping, Hu Bing, Begum Nurjahan, Bagnall Anthony,

Mueen Abdullah, Batista Gustavo, and Hexagon-ML. 2018. The UCR Time Series Classification

Archive. https://www.cs.ucr.edu/~eamonn/time_series_data_2018.

National Ecological Observatory Network (NEON). 2022. Barometric pressure above water on-buoy

(DP1.20004.001). https://doi.org/10.48443/V4AP-NY05.

National Ecological Observatory Network (NEON). 2022. Windspeed and direction above water on-

buoy (DP1.20059.001). https://doi.org/10.48443/E16C-8686.

https://google.github.io/snappy/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018
https://doi.org/10.48443/V4AP-NY05
https://doi.org/10.48443/E16C-8686

