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Introduction 

With the emergence of the Internet of Things (IoT) enormous amounts of streaming, timestamped 

datasets are being generated. Sensors from smart wearables, smart cities, autonomous cars, agricultural 

facilities etc., produce time-series data which needs to be collected centrally in order to be later analyzed. 

Time-series data is any data recording associated with a specific time stamp. Beyond IoT applications, 

time series are encountered in other domains, such as finance (stock prices, commodity prices, exchange 

rates), e-commerce (website traffic, sales volume, conversion rates), health care (electrocardiogram, 

blood pressure monitoring), social networks (user engagement, post frequency, sentiment analysis) and 

more. 

Traditional databases can be used to store and query time-series data. However, they lack specific 

optimizations when processing consecutive data values that are often related. Essentially, each input 

data and its timestamp are processed separately, resulting in bottlenecks in data ingestion rates and 

storage requirements. As a result, Time Series Databases (TSDBs) have been introduced to facilitate 

storage and querying of large time series datasets. TSDBs support time-based queries and analytics, 

such as filtering, aggregation, and statistical analysis of time-series data. Moreover, TSDBs offer 

specialized data compression algorithms, which allow them to handle large and complex time-series 

datasets. Based on the independent website DB-Engines the top-5 ranked TSDBs are: 1) InfluxDB, 2) 

Kdb+, 3) Prometheus, 4) Graphite, and 5) TimescaleDB. 

Due to the popularity of time-series data, many compression techniques have been proposed over the 

years. Depending on the application requirements, a lossless or a lossy compression technique can be 

used. The former reduces the size of data without loss of information, whereas the latter aims for much 

larger space savings while tolerating a bounded maximum error. Lossless time series compression 

techniques are used in applications where exact, detailed data values are needed. On the other hand, 

lossy techniques are more suitable for applications that are not particularly interested in individual exact 

values but rather seek to find and analyze the overall shape, trends, and characteristics of the data. 

Examples include seasonality detection, clustering, forecasting and similarity search. Traditional 

compression algorithms, i.e., LZ4, LZSS, ZStd etc., are not generally used for compressing time series 

data due to their slow running times that affect data ingestion rates and query performance. Specific 

compression algorithms oriented on time-series data include lossless techniques like Gorilla (Pelkonen 

et al., 2015), Chimp (Liakos, Papakonstantinopoulou and Kotidis, 2022) and Snappy (Google, 2011), or 

lossy algorithms such as Piecewise Aggregate Approximation (PAA) (Keogh et al., 2001) and Piecewise 

Linear Approximation (PLA) (Hakimi and Schmeichel, 1991). 

Sim-Piece Algorithm 

Piecewise Linear Approximation (PLA) is a fundamental data compression technique dating back to the 

1960s, commonly used to approximate time-series data. PLA algorithms represent time-series 

measurements using a sequence of line segments, while keeping the approximation error within a 

predetermined acceptable threshold. Clearly, these algorithms are associated with a trade-off between 

space efficiency and precision loss, i.e., the space savings grow with the value of the error threshold. 
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The proposed Sim-Piece (Kitsios et al., 2023) is a novel approach for PLA that seeks to exploit 

similarities among the line segments produced. Unlike previous PLA techniques, Sim-Piece comes up 

with lossy compressed representations that provide impressive space savings, even in cases where the 

acceptable error threshold is very small.  

When constructing a line segment, Sim-Piece fixes its starting point to a quantized value that is within 

a user input error of the original value. Then, we add subsequent data points to the segment by 

maintaining a pair of slopes, i.e., the extreme upper and lower slopes that satisfy the required 

approximation guarantees, until a point falls out of the area between them. As any of the lines between 

the two slopes can approximate the data points of the segment, we can find groups of segments with 

intersecting sets of candidate lines and represent them jointly, to reduce the overall space requirements.  

Sim-Piece computes the optimal solution to this problem, coming up with the minimum possible number 

of groups to represent the PLA segments. As a result, our technique achieves impressive compression 

ratios that vastly improve the current state-of-the-art approaches. 

Evaluation of Sim-Piece against state-of-the-art PLA methods 

Through extensive experiments on various datasets from diverse sources, we have demonstrated that 

Sim-Piece manages to achieve outstanding results compared to existing compression algorithms for time 

series data. In a lossy compression algorithm, the decompressed data values are within a maximum error 

threshold from the original values. This error threshold is defined by the application and is used to 

balance the tradeoff between the size of the data representation and the required accuracy of the 

computations. As an example, Table 1 shows the compression ratio achieved by Sim-Piece and three 

state-of-the-art PLA techniques, i.e., Mixed (Luo et al, 2015), Swing (Elmeleegy et al., 2009) and Slide 

(Elmeleegy et al., 2009), on five real datasets (Dau Hoang Anh et al, 2018 and NEON, 2022). The 

maximum error threshold used was 5% of each dataset range of values. Clearly Sim-Piece stands out as 

the most space-efficient algorithm, offering compression ratios that are far superior to other leading 

techniques.  

 

  PLA Compression Algorithm 

  Sim-Piece Mixed Slide Swing 

D
a
ta

se
t 

Cricket 74.8 45.2 38.3 22.8 

FaceFour 20.9 15.6 11.9 10.2 

Lightning 115.4 83.8 67.9 36.6 

Wind Speed 40.8 27.2 24.3 9.8 

Wind Direction 15.0 7.6 6.7 4.4 

Table 1: Compression Ratio of various PLA techniques. 

Furthermore, we explored the quality of the approximation obtained by each method. We used two 

popular metrics to measure quality (i) Mean Absolute Error (MAE) and (ii) Root Mean Square Error 

(RMSE). Compared to the other techniques, Sim-Piece provides the second-best average MAE and 

RMSE values at a significantly higher compression ratio. Moreover, for the same space, Sim-Piece 

clearly outperforms all existing PLA techniques in terms of both MAE and RMSE.  
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Sim-Piece against Lossless Compression Techniques 

When using lossless compression algorithms, the decompressed data are exactly identical as the original 

data. This strict requirement comes at a cost, as it limits opportunities for compressing the data further. 

As a result, lossy compression can achieve significantly higher compression ratios as some information 

is sacrificed, in a controllable manner. In some cases, sacrificing accuracy is indeed beneficial, as a form 

of data denoising. 

In a TSDB, the reduced size of a lossy data representation reduces disk access times, as more relevant 

data can be kept in memory when processing a user query over voluminous datasets.  The size of the 

data representation also plays a significant role in IoT applications, where remote sensory data needs to 

be transmitted to a central location. An IoT sensor that transmits its data over a wireless network by 

encoding them first with a lossy compression algorithm, will save network bandwidth and reduce energy 

transmission cost. Thus, lossy compression improves the scalability of IoT systems by reducing the 

amount of data that needs to be processed and stored (Deligiannakis, Kotidis and Roussopoulos, 2007; 

Deligiannakis and Kotidis, 2005). It can enable more IoT devices to be connected to a network without 

overloading the network or data storage resources. In addition, IoT devices that are powered by batteries 

can minimize energy consumption as they can keep their radios in a low-power state for longer intervals 

(Giatrakos et al., 2013). Additionally, lossy compression can also reduce the computational resources 

needed to process and analyze streaming time-series data in a decentralized system, which can further 

conserve energy.  

In the field of lossless time series compression, Gorilla is a compression algorithm particularly suited 

for floating-point time series. Due to its effectiveness, Gorilla is the preferred algorithm used in most 

existing TSDBs. A more recent Chimp lossless compression algorithm has been shown to outperform 

Gorilla and be very competitive in terms of space requirements with lossy PLA approaches. Our Sim-

Piece algorithm is motivated by the impressively low space requirements of Chimp and achieves 

significant improvements with regards to the state-of-the-art in PLA algorithms, offering better 

compression than Chimp, even when the precision error threshold is set extremely low. 

Table 2 presents the maximum error needed so that Sim-Piece produces an equivalent compression ratio 

to that of Chimp. The maximum error is expressed as the percentage of the range of the dataset. For 

example, the range of Wind Direction is 360° and maximum error is 360° × 0,44% = 1,584°. The data 

from this table suggest that Sim-Piece, unlike existing lossless algorithms, can provide highly accurate 

data representations while matching the performance of the best lossless streaming algorithm. Increasing 

the maximum error threshold beyond the depicted numbers results in significantly higher compression 

ratios for Sim-Piece, often by two orders of magnitude, compared to the lossless algorithm.  

 

Dataset Maximum Error 

Cricket 0,15% 

FaceFour 1.25% 

Lightning 0.12% 

Wind Speed 0.43% 

Wind Direction 0.44% 

Table 2: Sim-Piece Maximum Error per Dataset that produces an equivalent compression ratio to that 

of Chimp. 
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